Zeros of functions in weighted Bergman spaces.

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zeros of Extremal Functions in Weighted Bergman Spaces

For −1 < α ≤ 0 and 0 < p < ∞, the solutions of certain extremal problems are known to act as contractive zerodivisors in the weighted Bergman space Aα. We show that for 0 < α ≤ 1 and 0 < p < ∞, the analogous extremal functions do not have any extra zeros in the unit disk and, hence, have the potential to act as zero-divisors. As a corollary, we find that certain families of hypergeometric funct...

متن کامل

Zeros of random functions in Bergman spaces

© Annales de l’institut Fourier, 1979, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/), implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichie...

متن کامل

Weighted composition operators on weighted Bergman spaces and weighted Bloch spaces

In this paper, we characterize the bonudedness and compactness of weighted composition operators from weighted Bergman spaces to weighted Bloch spaces. Also, we investigate weighted composition operators on weighted Bergman spaces and extend the obtained results in the unit ball of $mathbb{C}^n$.

متن کامل

Operators on weighted Bergman spaces

Let ρ : (0, 1] → R+ be a weight function and let X be a complex Banach space. We denote by A1,ρ(D) the space of analytic functions in the disc D such that ∫ D |f(z)|ρ(1 − |z|)dA(z) < ∞ and by Blochρ(X) the space of analytic functions in the disc D with values in X such that sup|z|<1 1−|z| ρ(1−|z|)‖F ′(z)‖ < ∞. We prove that, under certain assumptions on the weight, the space of bounded operator...

متن کامل

Canonical Divisors in Weighted Bergman Spaces

Canonical divisors in Bergman spaces can be found as solutions of extremal problems. We derive a formula for certain extremal functions in the weighted Bergman spaces Aα for α > −1 and 1 ≤ p <∞. This leads to a study of the zeros of a specific family of hypergeometric functions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Michigan Mathematical Journal

سال: 1977

ISSN: 0026-2285

DOI: 10.1307/mmj/1029001887